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Abstract

In this paper we examine the effects of using object poses

as guidance to learning robust features for 3D object pose

estimation. Previous works have focused on learning fea-

ture embeddings based on metric learning with triplet com-

parisons and rely only on the qualitative distinction of sim-

ilar and dissimilar pose labels. In contrast, we consider

the exact pose differences between the training samples,

and aim to learn embeddings such that the distances in the

pose label space are proportional to the distances in the

feature space. However, since it is less desirable to force

the pose-feature correlation when objects are symmetric,

we discuss the use of weights that reflect object symmetry

when measuring the pose distances. Furthermore, end-to-

end pose regression is investigated and is shown to further

boost the discriminative power of feature learning, improv-

ing pose recognition accuracies. Experimental results show

that the features that are learnt guided by poses, are signifi-

cantly more discriminative than the ones learned in the tra-

ditional way, outperforming state-of-the-art works. Finally,

we measure the generalisation capacity of pose guided fea-

ture learning in previously unseen scenes containing objects

under different occlusion levels, and we show that it adapts

well to novel tasks.

1. Introduction

Detecting objects and estimating their 3D pose is a very

challenging task due to the fact that severe occlusions, back-

ground clutter and large scale changes dramatically affect

the performance of any contemporary solution. State of the

art methods make use of Hough Forests for casting patch

votes in the 3D space [27, 7] or train CNNs to either per-

form classification into the quantized 3D pose space [13] or

regress the object position [14] from local patches.

Another approach to the 3D object pose estimation prob-

lem involves transforming the initial problem into a nearest

Work done while VB and RK were at Imperial College London.

neighbour matching one, where extracted feature descrip-

tors are matched with a set of templates via nearest neigh-

bour search [9]. End-to-end deep networks for feature-

based nearest neighbour matching entail training a clas-

sification network with a classifier layer which is subse-

quently removed, while the penultimate layer serve as a

feature descriptor [24]. Direct feature learning for discrete

object classes with deep neural networks [26, 12] demon-

strated successful results by using siamese and triplet net-

works optimised for discriminative embeddings. The latter

are learned in a way that ensures that features extracted from

samples belonging to the same class are close in the learned

embedding space, and samples from different classes are

further apart. Wohlhart and Lepetit [29] adapted this frame-

work to the problem of learning feature descriptors for 3D

object pose estimation, by sampling the qualitative relation

of pose similarity, and forming triplets consisting of similar

and dissimilar poses.

It is apparent that moving from the continuous space of

3D object poses to the qualitative one of similar and dis-

similar pose pairs, leads to inevitable information loss. To-

wards this end in this paper we are interested in creating

a feature learning framework that directly uses the object

pose in the optimization process. Our key idea is that by

using the pose labels in the feature learning layer, we can

devise a learning procedure that has inherit knowledge of

the final goal (i.e. 3D pose estimation), thus allowing for a

switch from a qualitative optimization (similar and dissimi-

lar poses), to a quantitative one (directly computed distance

in the pose space). In the proposed learning framework, the

pose-feature correlation is established with the adjusted dis-

tances in the pose space. Direct 3D pose regression seems

challenging due to ambiguities in appearance/pose space,

the continuous nature of the multi-dimensional output space

and the discrepancy between synthetic data used for training

and real data used for testing. However, training an end-to-

end pose regression network can still facilitate feature learn-

ing. Similar to [24], while evaluating our system’s perfor-

mance, we remove the regression layer and use the feature

layer for nearest neighbour matching. The regression term

along with the pose-guided feature one further improves the
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Figure 1. (left) The overview of our method. We use a triplet network to learn embeddings suitable for both object recognition and exact

pose retrieval (right) Illustration of the proposed pose loss. Intuitively, our method aims to train a CNN in such a way that the distance in

the resulting D − dimensional embedding space is analogous to the pose differences.

discrimination power of features for pose recognition. In

summary, this paper offers the following contributions:

Pose-guided feature learning: we propose a new op-

timisation term for learning 3D pose feature descriptors

which enforces direct relationship between the learned fea-

tures and pose label differences. The effect of symmetry can

also be embedded into the learning procedure. Experiments

provide evidence that the pose-guided learned features are

significantly more discriminative than the ones learned with

more traditional metric learning based techniques [12, 29].

Regression-guided features: we plug in a regression

term into the proposed framework and show that this fur-

ther boost the performance levels of our system, especially

when using real training data.

Experiments on unseen objects and occlusions: lastly,

we investigate the performance of the feature learning meth-

ods when generalising from similar to dissimilar poses, and

previously unseen objects under different level of occlu-

sions.

The remainder of the paper is organized as follows. In

Section 2 we briefly describe the previous state of the art

methods for learning 3D pose descriptors, and explore in

more detail the most relevant work to ours [29]. We dis-

cuss its limitations, motivate our method, and introduce our

proposed approach in Section 3. In Section 4 we present

an evaluation of our method compared to some state-of-the-

art methods. Finally, in Section 5 we conclude with final

remarks.

2. Related Work

Recognizing and detecting objects along with estimat-

ing their 3D pose has received a lot of attention in the

recent literature. Early works made use of point-clouds

to facilitate Point-to-Point matching [8, 19], while the ad-

vent of low-cost depth sensors [9, 18] provided additional

data in favour of textureless objects. Hinterstoisser et al.

[9] designed a powerful holistic template matching method

(LINEMOD) based on RGB-D data which however suffers

in cases of occlusions. Inspired by this shortcoming, Te-

jani et al. [27] integrated LINEMOD into Hough Forests

to tackle the problem of occlusions and clutter. The work

of Brachmann et al. [4] along with its recent extension to

RGB-only images [5] employ a new representation frame-

work that jointly maps object coordinates and class labels.

Hodan et al. [11] present a method that tackles the com-

plexity of sliding window approaches, while fine 3D pose

estimation is performed via a stochastic, population-based

optimization scheme. In turn, in [25] exemplar SVMs are

slid in the 3D space to perform object pose classification

based on depth images.

Deep learning has only recently found application to the

object pose estimation problem. Doumanoglou et al. [7]

suggested using a network of stacked sparse autoencoders

to automatically learn features in an unsupervised manner

that are fed to a Hough Forest for object pose recovery and

next-best-view estimation. Kehl et al [14], used regression

autoencoders to learn patch representations for subsequent

voting in the pose space. In [13] Johns et al. employ a

CNN-based end-to-end learning framework for classifica-

tion of object poses in the 3D space and next-best-view pre-

diction. In turn, in [6] a CNN was used to learn projections

of 3D control points for acute object tracking, while in [16]

a CNN is utilized in a probabilistic framework to perform

analysis-by-synthesis as a final refinement step for the ob-

ject pose estimation. In the feature learning framework of

Wolhart and Lepetit [29], 3D pose estimation is performed

by a scalable Nearest Neighbour method on discriminative

descriptors learned by a CNN. While their work, which we

review below, is the most relevant to ours, the important dif-

ference is that in this paper we explore the direct usage of

pose labels in the feature learning process.

Learning pose feature descriptors with qualitative sim-

ilarity constraints. Wohlhart and Lepetit [29] use a met-

ric learning approach that has been shown to be very pow-

erful for learning robust features in several problems such
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Figure 2. (left) Illustration of the case of syaw = 0 for a simple case of a fully rotationally invariant object for the yaw axis. (right)

Illustration of the φ term (Equation 5) for all pose pairs individually per 3D axis. Note that the more symmetric objects present lower

values than the non-symmetric ones.

as face recognition and local feature descriptors [22, 2] as

well as 3D object pose. The method is based on a train-

ing dataset where each item is of the form {x, y,p}, with

x ∈ R
W×H×4 being the RGBD image, y the object class

label, and p the 3D pose of the object. In addition, a set

of synthetically generated (i.e. rendered views of the 3D

object model) templates for each object is stored, in order

to be used as reference frames for computing and matching

descriptors based on a K-nearest neighbour search method.

A convolutional neural network is used to train feature

embeddings based on the intuition that feature descriptors

for similar poses of the same object should be closer in the

learnt embedding space {x,x+,x−}, where x is an arbitrar-

ily chosen RGBD image of a specific pose, x+ is an image

of the object with a similar pose as x, and finally x− con-

tains an image of dissimilar pose compared to x. Formally,

the loss function for such a triplet is given as

Ltriplets =
∑

i

∆
(i)
+

∆
(i)
−

+ µ
(1)

where ∆
(i)
+ and ∆

(i)
−

represent the feature distances of the

similar and dissimilar data inside the ith triplet. Intuitively,

the final goal of the triplet-based optimization process is to

learn features such that the distance in the learned embed-

ding space between the two similar poses is lower than the

distance between the two dissimilar poses, within the lim-

its of the margin µ. In addition, a pair-based term Lpairs

is also included, in order to minimise distances between

identical poses but different viewing conditions (e.g. back-

ground variability and illumination changes) with

Lpairs =
∑

i

∆
(i)
+ (2)

where ∆
(i)
+ denotes the feature distance between the data

pair. Finally, the above two terms are combined in a com-

mon loss:

L = Ltriplets + Lpairs + λ||wT ||22 (3)

where w denotes the weights of the network.

A visualisation of the type of triplets and pairs that are

used as input can be found in Figure 3 (left). Note that

the triplets that are fed to Ltriplets, consist of both posi-

tive (i.e. all patches come from the same object, illustrated

with a green border) and negative (i.e. two patches from the

same object, and another from a different object, illustrated

with a red border). This is done in order to ensure that the

learned embeddings can be used for both object recognition

and pose estimation. Furthermore, we can observe that the

pairs that are optimized by the Lpairs term, consist of two

patches with identical pose but varying backgrounds.

Despite the promising results, an important limitation of

this work is that the similarity is only used as an indicator

function in order to form the triplet and the pair training

data. Thus, the final embedding space is built in terms of

pairs and triplets of similar and dissimilar patches, which

limits the discriminability of the embedding space. Note

that such a constraint is unavoidable for methods that learn

embeddings only using distinct classes (i.e. class label) [2,

12]. On the contrary, it is arbitrarily enforced in terms of

dealing with continuous labels such as 3D poses.

3. Pose guided RGBD feature learning

Our key observation is that the pair based term, which

acts on pairs of images extracted from the same object, can

be used to optimise exact pose similarities by using the

pose as a label. The creation of the embedding space di-

rectly using this exact pose label, could lead to a signifi-

cantly more discriminative embedding space, which is the

motivation behind the design of our method. We introduce

the Pose-guided Feature Similarity term Lpose, that aims to

associate distances in the learnt embedding space with dis-

tances in the pose label space. More formally, for a data pair

{(x1,p1), (x2,p2)} where x represents the RGBD image

and p the pose, the pair based loss that is to be minimised

is given by
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Figure 3. (left) Illustration of the training samples that are fed to the optimisation losses Ltriplets and Lpairs, for method from [29].(right)

Illustration of the training samples that are fed to the optimisation losses Lobject and Lpose, for the proposed method.

Lpose =
∑

i

{

||f(x
(i)
1 )− f(x

(i)
2 )||22 − δ(p

(i)
1 ,p

(i)
2 )

}2
(4)

where f(x) ∈ R
D is the learnt embedding function, and

δ(p1,p2) is a function encoding difference between two

poses. For a pair that has minimum pose difference of 0,

the optimisation process will enforce the distance between

the embeddings to go to zero. Thus, in general, Lpose en-

forces a direct relation between normalised pose and nor-

malised embedding distances. An illustration of this effect

is shown in Figure 1 (right). Note that in such a loss, it is

important for both the network feature layer, and the poses

to be normalised to lie on the unit hyper-circle.

In its most basic form, the function δ can be the euclidean

distance between two poses δ(p1,p2) = ||p1−p2||
2
2. How-

ever, this might be problematic in the case of embedding

learning for heavily symmetric objects. Recent work fo-

cuses on the issues of evaluating pose estimation taking into

consideration ambiguities arising from symmetric objects

[10]. We propose to also incorporate such an idea about

dealing with ambiguities into the training process in order

to equip the learning proccess with a way to become more

robust to symmetry issues.

One needs to consider cases where the object is non-

symmetric or symmetric in a non-trivial way. Note that

in this case it is desirable for the distance function δ to be

learnt according to a probability distribution of symmetry,

from different rendered views of the object. This allows

dealing with objects that exhibit symmetry only at particular

pose combinations, not all around a certain axis. In partic-

ular, we adopt an example of such learnt representation of

the function δ which is to define it for each pair (p1,p2) of

poses as the difference in the depth channel of the rendered

views of the model of the object, inspired by [10]. This is

based on the idea that if two poses (p1,p2) result in a two

rendered depth images of the object (x1,x2) that are very

similar (i.e. ||x1 − x2|| ≈ 0), then their difference in the

learnt embedding space should also be low, regardless of

the magnitude of 〈p1,p2〉. More formally, we weight the

loss contribution of each ith sample in Equation 4 with the

respective symmetric term

φ(p
(i)
1 ,p

(i)
2 ) = ||s(p

(i)
1 )− s(p

(i)
2 )||22 (5)

where s(p1) and s(p2) represent the renderd depth images

at the poses p1 and p2. Practically, the values of φ can be

stored in a look-up table, for all the possible training com-

binations of pose pairs. Note that the values in this lookup

table, need to be normalised to exhibit values in the range

[0, 1]. Since exact weighting might be undesirable, this term

can also be thresholded such that that poses with similar

renderings do not contribute at all to the loss.

In Figure 2 (left) we illustrate the case of a rotationally

invariant object across a single axis and in Figure 2 (right)

we show results for the phi term computed from the depth

differences of the rendered views. For illustration purposes,

we plot the generated 2D pose-pairs distributions separately

for yaw, pitch and roll. Note that more symmetric objects

such as the cup or the bowl, exhibit distributions with a

higher percentage of lower distances (blue colour) in gen-

eral. For the non-symmetrical objects, low values are ex-

pected only around the diagonals, since any pose change,

will result in slight differences in the rendered view.

Triplet based object recognition loss. The pose-feature

similarity term that was introduced, cannot be used by it-

self, since there is also a need for a loss that deals with the

embeddings from different objects. This is to enforce em-

beddings that are computed from the same object, but ar-

bitrary poses, to have lower distances compared to embed-

dings from different objects, irrespective of the pose differ-

ences. Since we cannot optimise such an objective in terms

of pairs, we also use a triplet ranking loss similar to Equa-

tion 1, and a set of triplets of the form {x,x+,x−}. A

notable difference is that in our triplet term, there are only

negative triplets (i.e. x,x+ are randomly sampled patches

from one object, and x− from a different one), something

that is illustrated in Figure 1 (right). Thus, we term our

triplet loss Lobject. The combined loss to be optimised is

L′ = Lpose + Lobject + λ||wT ||22 (6)

Intuitively, such a combined multi-task loss is better

equipped to deal with both the recognition and the pose es-

timation part of the problem, since they are dealt with two

separate terms. On the other hand, the loss from Equation 3,
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Figure 4. Illustration of the end-to-end feature learning and pose

regression network.

jointly optimises both the object recognition term and the

intra-object pose related embedding learning by utilising

the triplet loss from Equation 1.

Direct pose regression. Several recent works report good

results by using direct regression objectives in order to infer

the pose of the objects or cameras [14, 15, 17]. Inspired by

this, in addition to the feature learning terms, we investigate

a method that directly regresses the object pose p̂ given an

input x. The loss to be minimised is a standard RMS error

over all samples

Lreg =
∑

i

φ(p̂(i),p(i)) · ||p̂(i) − p
(i)||22 (7)

where the function φ is defined in Equation 5, and p̂ and p

denote the regressed and the ground truth pose respectively.

Note that in order for the φ term to be used, the pose space

needs to be quantized [17]. This regression loss can be

added in the collection of losses from Equation 6, with

a suitable scaling parameter to alleviate any issues arising

from different absolute numerical values.

4. Experimental results

In this section, we present experimental results, which

show that significant improvements can expected be using

our pose-guided feature terms over [29]. First, we present

results by following the same experimental protocol of [29]

in Section 4.2. In addition, we perform experiments using

only real training data to understand how well the method

generalises to unseen objects, and handle occlusions, in

Section 4.3 and Section 4.4 respectively. Note that the re-

sults presented below are mainly with the loss collection of

Equation 6, and the regression loss is added only when ex-

plicitly indicated as such. For the results in Section 4.2 and

Section 4.3, we use the LINEMOD dataset, introduced in

[9], as modified by the authors of [29]. For Section 4.4, we

use an novel dataset of objects grasped by a human hand,

collected by us.

4.1. Implementation details

Our convolutional network architecture can be de-

scribed as follows {Input(4,W,H) − Conv(16, 8, 8) −
Conv(7, 5, 5) − FC(256) − FC(32)}, where

Conv(N,M,M) represents a convolutional layer with

N filters of size M × M , and FC(D) a fully connected

layer with D outputs. Note that this is identical to the

architecture of [29], for a fair comparison. The final

feature layer FC(D) can be of a variable length, which

allows a trade-off between the feature extraction size and

performance. The experiments from [29] showed dimin-

ishing returns for D > 32. Thus, in all our experiments

we fix D = 32. We use ReLU as the non-linearity in

all our convolutional and fully connected layers, together

with max-pooling. In the end-to-end regression network,

we use Tanh as the final non-linearity. For training the

network we use the stochastic gradient method [3], with

0.9 momentum and initial learning rate of 0.01. We also

decay the learning rate in each epoch, to avoid oscillations

around local minima.

Since the authors of [29] do not provide pre-trained

networks, we use the code they provide with the default

parameters described, in order to repeat the learning pro-

cess. Note that in all our experiments, we use descriptors

learnt on RGBD data, since this has been shown to pro-

vide a slight improvement over both the individual depth

and colour channels [21, 29, 20].

4.2. Training with synthetic data

In this section, we follow the experimental protocol of

[29], i.e. we train our network with rendered views of the

objects, and we include a small portion of real images in

the train data, in order to force the network to learn repre-

sentation invariant to the background. We use the original

training configuration samples as provided 1. The interested

reader can refer to [29] for more details.

Training samples. In Figure 3 (right), we show exam-

ples of the input given to each optimisation loss Lobject and

Lpose. Note that compared with the inputs that were used

in [29], we see that the triplets for the Lobject only contain

the negative samples where the third image comes from a

different object. This allows the triplet term to more focus

on distinguishing objects, delegating the pose related opti-

misations to the pose term, which acts on the pairs.

Pose versus feature similarity. In Figure 5 we plot for each

object, the 2D histogram that indicates correlations between

pose differences and descriptor distances. To compute this,

we collect all items of the real test set together with all the

rendered templates, and we compare all pairwise distances

both in the pose, and in the learnt embedding space. As

noted by [29], the ideal descriptor should have high values

only in the diagonal of this plot, since significant correla-

tion between small angles and large distances increases the

probability of missing a correct template during NN match-

ing, and high correlation between large angles and small

distances leads to incorrect matches.

1https://cvarlab.icg.tugraz.at/members/wohlhart.php
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Figure 5. Illustration of the correlations between pose differences and learnt embedding distances, between real test images and rendered

templates for the 15 objects of the LINEMOD dataset [9]. (left) Learning with qualitative similarity constraints [29]. (right) Learning with

our pose-guided feature learning. We observe that the distances in the feature space are significantly more correlated with the differences

in the pose space.

Note that using our learnt embedding space (right) leads

to much more robust representations. On the other hand, the

features from [29] (left) exhibit much more expanded distri-

butions, which indicates that items with similar poses might

have representations that significantly vary. This is a direct

effect of optimising the descriptors using only qualitative

pose labelling (similar or dissimilar) since even represen-

tations that are even slightly compliant with the ordering

inside a triplet yield zero loss functions. On the contrary,

due to the effect of Equation 4, there is a direct and linear

relation between feature and pose similarity.

K-nearest neighbour pose recognition accuracy. Fol-

lowing the protocol of [29], in Figure 6 we plot the pose

recognition accuracy (y − axis) across different thresholds

of acceptable pose difference in terms of maximum error

(x − axis). The accuracy at pose threshold t is defined as

the percentage of test images for which the best template

matching angle error is below t. The value of K indicates

the number of nearest neighbours that are used for template

pose retrieval and selection of the best error.

Note that the learnt representations using our method,

outperform the previous work by a large margin, especially

in the high accuracy area (5o). In terms of matching with

only a single NN, we can examine a performance boost in

the high accuracy 5o area from 54% to 72%. This is a sig-

nificant improvement, since it allows very high accuracy re-

sults for a large majority of the test cases with only a single

nearest neighbour, which leads to much improved computa-

tional efficiency. In general, our method performs as good

as the prior state-of-the-art, using only one nearest neigh-

bour instead of two.

Figure 6. Pose recognition accuracy for different levels of maxi-

mum accepted pose difference. K denotes the number of nearest

neighbours. The proposed method significantly outperforms the

state of the art RGBD deep pose descriptor.

Table 1. Object recognition rate when the pose of the retrieved

object is ignored.

LINEMOD Wohlhart [29] Ours %

83.70 99.31 99.98

Object recognition rate. In Table 1, we show the object

recognition rates for different methods. The recognition rate

measures the percentage of cases in which the nearest re-

trieved template was from the same object class, ignoring

the pose difference. We can observe that there is a clear
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boost using our method, likely because the proposed triplet

loss Lobject solely focuses on the recognition aspect of the

learnt embedding space.

Evaluation of different optimisation terms. In Table 2,

we show the performance of our methods using different

combinations of the terms. The pose estimation accuracy

is measured in terms of percentage of test images that were

correctly matched to their closest template. The proposed

pose-guided feature term significantly boosts the accuracy

of [29], and the regression term when it is used in addition

to the pose-guided feature term tops up the accuracy mean-

ingfully. We can also see that incorporating the symmetry

constraints into the learning function improves the results,

especially for symmetric objects. It has to be noted that

the authors of [29] employ complex bootstrapping and fine-

tuning schemes, in order to aid the learning process. Since

the authors did not report results without such schemes, we

use their implementation to report the performance with-

out bootstrapping. On the contrary, our method does not

employ such complicated schemes, something that further

indicates the superiority of the pose guided feature learn-

ing terms. It has to be noted that the use of bootstrap-

ping and fine tuning increases the training time, and thus

our method is also characterised by significantly decreased

training computational burden. In addition to [29], we show

results for two further baseline methods LINEMOD [9] and

LCHF [27]. Note that for these two baselines, the evalua-

tion is done without any aspect of object recognition, since

the templates to be matched are only limited to the ones

from the same class. This is due to the fact that these pose

estimators are individually trained per object and include

no recognition aspect. Note that LCHF [27] performs sim-

ilarly with the deep descriptors from [29], even though the

deep feature descriptor is learnt simultaneously for all the

objects, something that indicates the great learning capacity

of CNNs.

4.3. Training with real data

In this section, we present a different experimental pro-

tocol, in order to examine how similar and dissimilar train-

ing/testing sets affect the pose recognition performance

of the deep learning baselines. Since it is hard to qual-

ify/quantify the gap between the synthetic rendered images

and real images (Section 4.2), we use real training images

only, which are chosen via a set of different criteria lead-

ing to the protocols 1, 2 and 3 described below. For our

experiments, we use the LINEMOD dataset [9] and use as

an evaluation metric the average pose difference between

the query and the top K = 5 retrieved nearest neighbours

[28, 23].

Protocol 1 - Random train/test split. We split the real

imaages of the LINEMOD dataset into train (30%) and

test (70%) samples randomly. This guarantees that similar

Figure 7. Results for training and testing with real data. First col-

umn indicates the query image, subsequent columns show the re-

trieved 5 nearest neighbours using our pose-guided features.

Figure 8. Results for training and testing on real data. For descrip-

tion of the three protocols please refer to the text.

poses are included in both train and test sets, thus protocol

examines how well a feature descriptor performs in terms

of identifying poses that are very close to the ones already

seen. In Figure 8 (right) we present the mean angle errors

of different methods across the test data. It is clear that

our proposed method of combining the pose-guided feature

term and regression term leads to improved results.

Protocol 2 - Dissimilar train/test poses. We split the data

into train and test by combining sets of similar poses into

the same category. With this protocol, poses that are very

similar will be either on the train data, or the test data, but

could not be in both. This allows us to investigate how well

different methods adapt to unseen poses. In Figure 8 (left),

we present results for this evaluation protocol. Our pro-

posed method of combining all optimisation terms leads to

the best results. One important observation is that the re-

gression term does not perform as well as in Protocol 1,

something that indicates that the regression term can boost

the performance only when it has seen similar poses in the

training set.

Protocol 3 - Unseen objects. While protocols 1 and 2 aim

to examine the performance degradation from training and

testing on similar poses to dissimilar poses, it is not very

clear how such descriptors perform when evaluated in un-

seen objects. We form our training and test data in such a

way that for every test object the training process is done

on triplets that do not contain any samples from this ob-

ject. In Figure 8 (middle), we present results for the ape

3862



Table 2. Performance in terms of % of test images that were correctly matched to their nearest template in the pose space. Note that

the proposed methods do not use bootstrapping, and that both the proposed methods and [29] do both object recognition as well as pose

estimation. On the contrary [9] and [27] learn individual pose estimators for each object.

ape benchvise cam can cat driller duck eggbox glue holepunch. iron lamp phone average

LINEMOD [9] 32.01 28.64 - 24.45 33.74 21.22 30.16 - - 32.01 26.82 22.81 23.25 27.51

LCHF [27] 35.51 46.92 - 35.25 35.51 43.38 37.50 - - 43.33 38.80 36.59 32.01 38.48

Ltriplets + Lpairs [29] (no bootstrapping) 18.71 20.12 21.99 18.32 20.06 16.41 15.09 15.85 14.14 23.23 20.19 20.30 17.60 18.61

Ltriplets + Lpairs [29] 30.99 35.45 37.44 31.37 26.95 27.66 27.00 23.91 25.14 32.72 28.92 32.69 34.19 30.34

Lobject + Lpose δ(p
(k)
1 , p

(k)
2 ) 49.51 51.43 58.03 48.92 55.37 42.58 47.41 47.34 49.78 53.29 55.63 52.84 51.19 51.02

Lobject + Lpose φ(p1,p2) 51.61 51.70 57.21 49.84 56.66 45.16 50.51 58.20 53.14 57.51 58.32 57.76 58.66 54.32

Lobject + Lpose φ(p1,p2) + Lreg 53.26 52.89 59.73 51.59 57.46 46.71 51.58 59.29 55.51 55.84 60.31 57.91 61.35 55.64

sequence. Results for other objects are similar. It is worth

noting that the addition of pose regression hurts the per-

formance, which is in contrast with the two previous pro-

tocols. This indicates that directly optimising the pose re-

gression term, can be problematic in terms of generalization

to novel objects. The best performing method is the pose-

guided feature learning, which shows that a combination of

discriminative feature learning and enforcing pose-feature

similarity, can be beneficial even for unseen objects.

4.4. Experiments with occlusions

The real images in the LINEMOD dataset in the previous

sections has been used primarily for testing in literature, and

synthetically rendered images were used for training. In this

section, we use a novel dataset called Hand-Object dataset,

which consists of fully annotated 11 objects, and is char-

acterized by occlusions of significant parts of the object by

humans that are grasping the object. We obtain the object

pose annotations either by fitting 3D models of the objects

to a scene with the help of a tracker (the belt object) or a

magnetic sensor trakSTAR that captures the 3D locations

and orientations of a sensor, that we attach to an object [1]

(10 other objects). In Figure 9, we present some samples

of our dataset. For each object a human freely manipulates

it without any severe hand occlusions, denoted as the clean

data, and subsequently grasps in such a way that introduces

significant occlusions and manipulates the object, denoted

as the occluded data. We split the videos into 60% train and

40% test images. More details are given in the supplemen-

tary material.

We modify the pose-guided feature term to include one

sample fully visible, and one obscured as follows Locc =
∑

i

{

||f(x
(i)
occ) − f(x

(i)
clean)||

2
2 − ||p

(i)
occ − p

(i)
clean||

2
2

}2
. By

adding this term to the learning process, we ensure that two

images with similar poses, will be projected close in the

feature space, despite the fact that parts of the obscured.

Table 3 shows the average angle error between the retrieved

NN and the ground truth NN with and without the occlusion

term on our hand-object occlusion dataset. We can observe

that the proposed method leads to impoved results.

Figure 9. (left) Objects from our real captured occlusion dataset

(right) Results for the tracker-based occluded dataset. 1st col-

umn shows a real RGBD image, 2nd shows the image rendered

using the tracking annotation, 3rd shows the rendered object corre-

sponding to the occluded image, 4th shows the nearest neighbour

retrieved using our pose-guided features.

Table 3. Occlusion dataset results. The network is able to learn

representations that are significantly more invariant to occlusions.

Reported is the average angle error from the ground truth.

w\o Locc w\Locc

belt object (tracker labels) 14.3 11.8

avg. of 10 objects (sensor labels) 36.3 27.7

5. Conclusions

We examine the use of object poses as guidance for

learning robust features used for 3D object pose estimation.

Previous works have focused on learning embeddings based

only on the qualitative binary distinction of similar and dis-

similar pose labels. In contrast, we consider the exact pose

differences between the training samples such that the dis-

tances in the pose label space are proportional to the dis-

tances in the feature space. Symmetry of objects and pose

regression were further investigated to better guide the fea-

ture learning process. The proposed methods yielded more

discriminative pose features than the ones learned in the tra-

ditional way, outperforming the state-of-the-art.
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